

Approximation Algorithms

Lecture 9

Last Time:

Uncapacitated
Facility Location

Today:

Bin packing

Bin Packing

- n items ; $a_1, \dots, a_n \in (0, 1]$ denote their sizes
- Pack items into as few bins of size 1 as possible

[Karmarkar & Karp '78]

Today : $OPT + O(\log^2 OPT)$ approx. algo.
based on deterministic rounding

Assumption : Each piece has size $\geq \frac{1}{\text{SIZE}(I)}$

- Let s_1, \dots, s_m be the distinct item sizes in input I .

$$s_m \geq \frac{1}{\text{SIZE}(I)}$$

- $b_i^o \triangleq \# \text{items of size } s_i \text{ for } i \in [m]$
- Configuration: m -tuple (t_1, \dots, t_m) denoting packing of a bin
i.e, this bin has t_i^o items of size s_i^o
 $\forall i \in [m]$

$$\sum t_i s_i^o \leq 1$$

- # possible configurations ?
- Let T_1, \dots, T_N denote the configurations.
- Variable x_j^* for T_j^* , $j \in [N]$
denotes # bins packed with config T_j^* .
- $t_{ij}^* \triangleq \# \text{items of size } s_i^* \text{ in config } T_j^*$
 $i \in [m], j \in [N]$

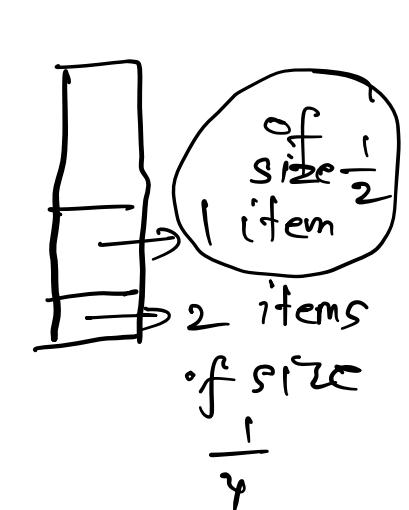
IP formulation for bin packing

$$\text{minimize } \sum_{j=1}^n x_j$$

$$\text{a.t. } \sum t_{ij} x_j \geq b_i \quad \forall i \in [m]$$

$$x_j \in \mathbb{N} \cup \{0\}$$

T_j t_{ij}
 \downarrow
 #items of
 Size s_i in T_j



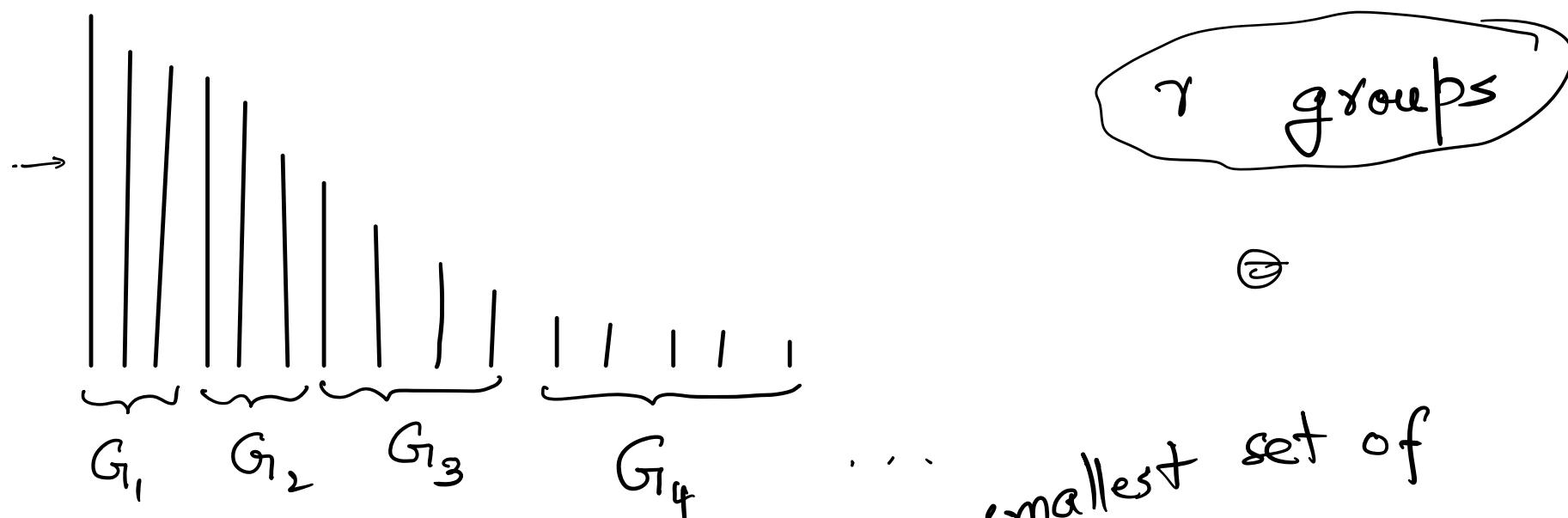
- Clearly, $\sum s_i b_i = \text{SIZE}(I) \leq \underbrace{Z_{LP}^*(I)}_{\text{bin packing instance}} \leq \text{OPT}(I)$

bin packing
instance

Theorem (Karmarkar & Karp)

LP can be solved up to additive error of 1 in time $\text{poly}(m, \log(\frac{n}{S_m}))$

Next ingredient: Harmonic grouping scheme



- G_1 consists of the ^{smallest set of} largest items whose sizes sum up to ≥ 2
- \dots

$$\Rightarrow \gamma \leq \frac{\text{SIZE}(I)}{2}$$

$$n_i^o - \# \text{items in } G_i^o$$

- $n_i^o \geq n_{i-1}^o \quad \forall i^o = 2, \dots, r-1$

- Discard G_1 & G_r

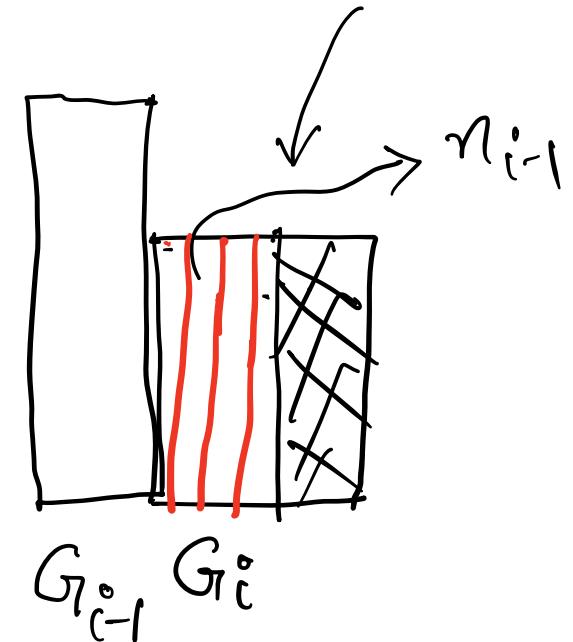
→ = retain largest n_{i-1}^o items in G_i^o

- for each $i \in \{2, \dots, r-1\}$

} • discard the smallest $n_i^o - n_{i-1}^o$ items

in G_i^o

• equalize sizes of remaining items to the largest size in G_i^o



Rounded instance - I'

Claim A: # distinct item sizes in $I' \leq \frac{\text{SIZE}(I)}{2}$

Claim B: Total size of all discarded pieces is $O(\log(\text{SIZE}(I)))$

Pf: Consider items removed from G_i^*
We removed $k = n_i^* - n_{i-1}^*$ smallest items

$$\leq \frac{3k}{n_i^*}$$

Total Size of items in $G_i^0 \leq 3$

- Consider k smallest elements in G_i^0 .

- Suppose their total size $> \frac{3k}{n_i^0}$

$\Rightarrow \exists$ an item with size $> \frac{3}{n_i^0}$

\Rightarrow Total size of $n_i^0 - k$ largest items $\left\{ > \frac{3(n_i^0 - k)}{n_i^0} \right\}$

\Rightarrow Total size in $G_i^0 > 3\left(\frac{n_i^0 - k}{n_i^0}\right) + \frac{3k}{n_i^0} = 3$

Total size of $G_i^0 \leq 3$

$$n_y \leq 3 \cdot \text{SIZE}(I)$$

\therefore Size of removed items from $G_i^0 \leq 3 \left(\frac{n_i - n_{i-1}}{n_i} \right)$

$$\frac{1}{j^0} \geq \frac{1}{n_i^0} \quad \forall j^0 \leq n_i^0 \quad \leq 3 \cdot \sum_{j=n_{i-1}+1}^{n_i} \frac{1}{j}$$

H_{n_i}

\therefore Total size of all items removed

$$\leq 3 \sum_{j=1}^{n_y} \frac{1}{j} + b \\ = O(\log(\text{SIZE}(I)))$$

Algorithm

for instance I^* , first fit

uses $\leq 2 \cdot \text{SIZE}(I^*) + 1$ bins

BINPACK(I)

if $\text{SIZE}(I) < 10$:

Pack pieces using First Fit

$\leq 20 \cdot PT + 1$
guaranteed

else

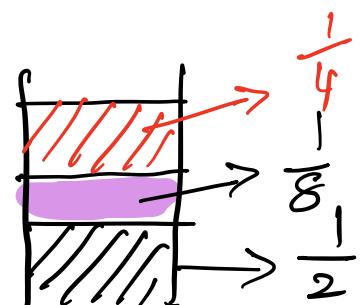
- Apply grouping to create I'
- Pack discards using FirstFit in

$O(\log \text{SIZE}(I))$ bins

Why is this possible?

- Solve LP on \mathcal{I}'
- Let x be optimal soln.
- $\left. \begin{array}{l} \text{integer part of solution} \\ \text{of solution} \end{array} \right\}$
 - Pack $\lfloor x_j^* \rfloor$ bins in configuration T_j^* for $j^* = 1, 2, \dots, N$; call the packed pieces \mathcal{I}_1 .
 - Pack the remaining pieces, \mathcal{I}_2 , via BINPACK (\mathcal{I}_2).

2.3 bins packed like



Lemma

$$z_{LP}^*(I_1) + z_{LP}^*(I_2) \stackrel{(2)}{\leq} z_{LP}^*(I') \stackrel{(1)}{\leq} z_{LP}^*(I)$$

Proof:

(1) is straightforward.

(2) Optimal soln. for I' is x

$\rightarrow x - \lfloor x \rfloor = (\dots, x - \lfloor x_j^* \rfloor, \dots)$ is a feasible
soln. for LP on I_2

$\rightarrow \lfloor x \rfloor$ is a feasible solution for I_1 .

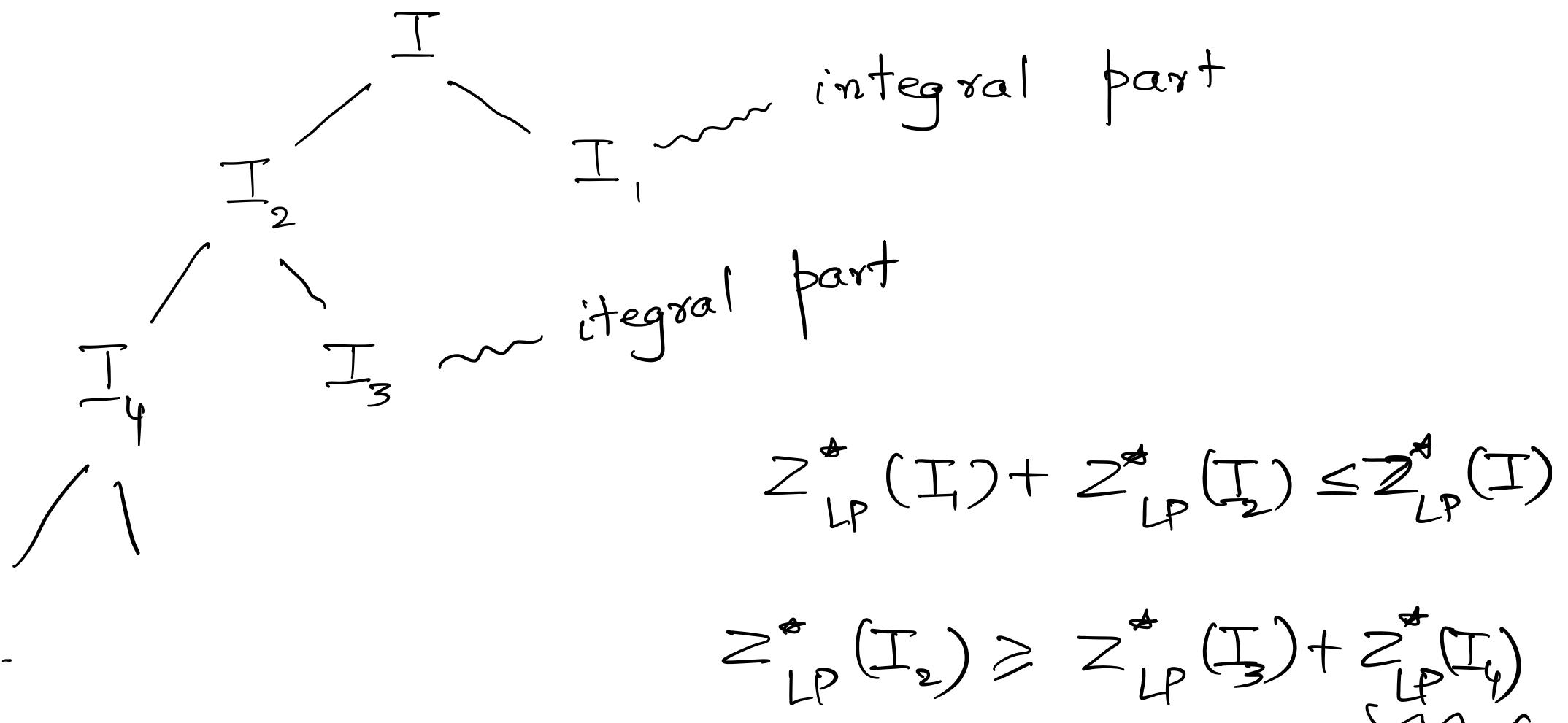
- o Each recursion level

first part

← { * pieces packed by integer part of
LP solution → need to account for
{ * pieces packed after being discarded
by grouping

* pieces packed by recursive call.

o Total #bins occupied by }
pieces in first part } $\leq Z_{LP}^*(I)$
over all recursion }
levels



$I_\ell \dots \text{SIZE}(I_\ell) \leq 10$

$$Z_{LP}^*(I) \geq Z_{LP}^*(I_1) + Z_{LP}^*(I_3) + Z_{LP}^*(I_5) + \dots +$$

- Only error in each recursion level caused by discarded pieces

- Need to bound # recursion levels

$$\text{SIZE}(I_2) \leq \frac{1}{2} \text{SIZE}(I)$$

- Total size of input in recursive call is $\leq \frac{1}{2}$. Size of original input

$$\text{SIZE}(I_2) \leq \sum_{j=1}^N x_j - \lfloor x_j \rfloor$$

o RHS above \leq # non-zeroes in the
optimal LP soln. α

basic
optimal solution \leftarrow \leq # constraints in LP
(Reading
exercise) \leq # distinct item sizes
after grouping
 $\leq \frac{\text{SIZE}(I)}{2}$

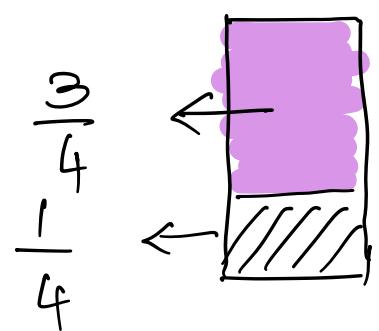
Total #bins used by }
alg o .

\leq Total #bins used to + Total #bins used
pack the integral to pack the
part discarded pieces

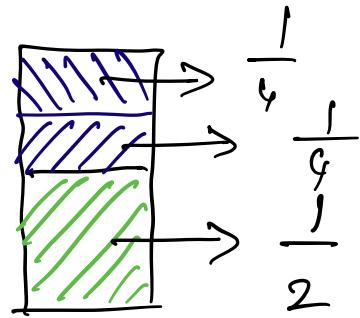
$\leq Z_{LP}^*(I) + O(\log^2 \text{SIZE}(I))$

$\leq \text{OPT}(I) + O(\log^2 \text{OPT}(I))$

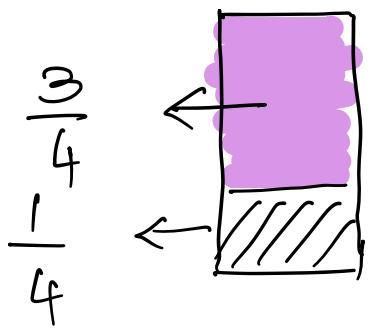
✓



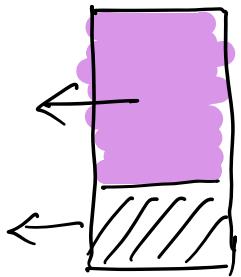
2.5



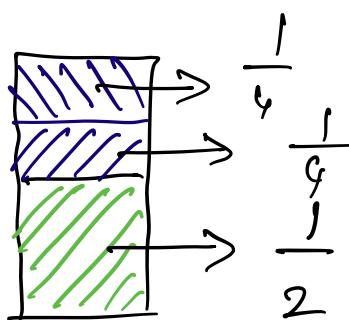
1.5



$\frac{3}{4}$



$\frac{3}{4}$



0 0 0 0 0

2 items of size $\frac{3}{4}$, 1 item of size $\frac{1}{2}$, 4 items of size $\frac{1}{4}$